Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

William T. A. Harrison, a*
H. G. Anilkumar, b
H. S. Yathirajan, b
B. Sadashivamurthy and
Y. B. Basavaraju b

^aDepartment of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, Scotland, and ^bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India

Correspondence e-mail: w.harrison@abdn.ac.uk

Key indicators

Single-crystal X-ray study T = 120 KMean $\sigma(C-C) = 0.002 \text{ Å}$ R factor = 0.041 wR factor = 0.115Data-to-parameter ratio = 17.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

3-Chloro-4-hydroxy-4'-methylbenzophenone

The title compound, $C_{14}H_{11}ClO_2$, possesses normal geometrical parameters. The two benzene rings are twisted by 54.70 (4)°, perhaps as a result of steric repulsion between H atoms. The crystal packing is consolidated by an $O-H\cdots O$ hydrogen bond, $\pi-\pi$ stacking and $C-H\cdots O$ and $C-H\cdots \pi$ interactions, resulting in a two-dimensional network.

Received 21 October 2005 Accepted 9 November 2005 Online 16 November 2005

Comment

The title compound, (I) (Fig. 1), is an intermediate for the synthesis of podophyllotoxin and its derivatives which have pharmaceutical applications (Basavaraju & Devaraju, 2002). More generally, benzophenone derivatives have many applications in organic chemistry (Sieron *et al.*, 2004; Khanum *et al.*, 2005).

Compound (I) possesses normal geometrical parameters (Allen *et al.*, 1995). The dihedral angle, δ , between the mean planes of the two benzene rings (atoms C1–C6 and C8–C13) is 54.70 (4)°. The C–C_c (c = carbonyl) C6–C7 [1.480 (2) Å] and C7–C8 [1.482 (2) Å] bond lengths are only slightly shorter than normal C–C single bonds, indicating negligible conjugation between the two aromatic ring systems. The rings may be twisted as a result of steric repulsion between the C5 and C9 H atoms (H5···H9 = 2.40 Å; van der Waals contact distance = 2.40 Å), although we note that H9 also participates in a C–H···O interaction (see below). Many other substituted benzophenones possess similar geometrical parameters for the equivalent distances and angles. For example, in 4-dimethylamino-4′-[bis(2-hydroxyethyl)amino]benzophenone

Figure 1The molecular structure of (I), with 50% probability displacement ellipsoids (arbitrary spheres for the H atoms).

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 2 Detail of (I) showing how π - π stacking (pink line) and C-H···O (yellow lines) and C-H··· π (green lines) weak intermolecular interactions help to establish the crystal packing. Symmetry codes as in Table 1; additionally (iv) 1-x, 1-y, -z.

The packing for (I), with all H atoms except H1 omitted for clarity. The $O-H\cdots O$ hydrogen bond is indicated by a dashed line. The molecule containing $O2^*$ is generated by the symmetry code (x, 1 + y, z).

(El Sayed *et al.*, 2001), $H \cdot \cdot \cdot H = 2.38 \text{ Å}$, $C - C_c = 1.460$ (3) and 1.484 (3) Å, and $\delta = 47.4$ (1)°, and in (3-chlorophenyl)(2-hydroxy-5-methylphenyl)methanone (Khanum *et al.*, 2005) $H \cdot \cdot \cdot H = 2.52 \text{ Å}$, $C - C_c = 1.468$ (3) and 1.493 (3) Å, and $\delta = 57.37$ (12)°.

As well as van der Waals forces, the crystal packing in (I) appears to be controlled by several different intermolecular interactions (Table 1). The most clearcut is an $O-H\cdots O$ hydrogen bond that links adjacent molecules of (I) in the *b*-axis direction. Fig. 2 shows that $\pi-\pi$ stacking occurs between adjacent inversion-related C1–C6 benzene rings, with a

centroid–centroid separation of 3.7642 (10) Å and an interplanar distance of 3.357 Å. Additionally, a PLATON (Spek, 2003) analysis of (I) identified probable $C-H\cdots O$ and $C-H\cdots \pi$ interactions (Table 1). Together, these interactions lead to a two-dimensional network that propagates in the ab plane. The packing is shown in Fig. 3.

Experimental

A solution of o-chlorophenol (1 g, 0.0077 mol) in dry dichloromethane (10 ml) was treated with anhydrous aluminium chloride (1.037 g, 0.0077 mol). The reaction mixture was stirred continuously for 30 min and then cooled. To this, a solution of toluoyl chloride (1.203 g, 0.0077 mol) in methylene chloride (10 ml) was added dropwise and the mixture kept overnight. After 24 h, about 5 ml of concentrated HCl was added and the reaction mixture was stirred for another 24 h. Aqueous NaCl solution (10%) was added to break the emulsion and the lower organic layer was separated and washed with 10% brine. Excess dichloromethane was distilled off on a water bath. The concentrated solution was kept overnight, resulting in a palebrown solid (yield: 89.2%; m.p. 352 K). Colourless single crystals of (I) were recrystallized from a 1:1 mixture of acetone and acetonitrile.

Crystal data

$C_{14}H_{11}ClO_2$	Z = 2
$M_r = 246.68$	$D_x = 1.410 \text{ Mg m}^{-3}$
Triclinic, $P\overline{1}$	Mo $K\alpha$ radiation
a = 7.1062 (3) Å	Cell parameters from 2534
b = 8.5441 (5) Å	reflections
c = 9.8766 (6) Å	$\theta = 2.9 - 27.5^{\circ}$
$\alpha = 86.124 \ (3)^{\circ}$	$\mu = 0.31 \text{ mm}^{-1}$
$\beta = 83.804 (3)^{\circ}$	T = 120 (2) K
$\gamma = 77.290 \ (3)^{\circ}$	Cut block, colourless
$V = 580.96 (5) \text{ Å}^3$	$0.32 \times 0.16 \times 0.10 \text{ mm}$

Data collection

Nonius KappaCCD diffractometer	2037 reflections with $I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.048$
Absorption correction: multi-scan	$\theta_{\rm max} = 27.8^{\circ}$
(SADABS; Bruker, 2003)	$h = -9 \rightarrow 9$
$T_{\min} = 0.906, T_{\max} = 0.969$	$k = -11 \rightarrow 11$
11199 measured reflections	$l = -12 \rightarrow 12$
2684 independent reflections	

Refinement

.,	
Refinement on F^2	H atoms treated by a mixture of
$R[F^2 > 2\sigma(F^2)] = 0.041$	independent and constrained
$wR(F^2) = 0.115$	refinement
S = 1.05	$w = 1/[\sigma^2(F_0^2) + (0.0595P)^2]$
2684 reflections	+ 0.1677P
158 parameters	where $P = (F_0^2 + 2F_c^2)/3$
-	$(\Delta/\sigma)_{\rm max} < 0.001$
	$\Delta \rho_{\text{max}} = 0.25 \text{ e Å}^{-3}$
	$\Delta \rho_{\text{min}} = -0.35 \text{ e Å}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

D $ H$ $\cdot \cdot \cdot A$	<i>D</i> —Н	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-H\cdots A$
$\begin{array}{c} O1 - H1 \cdots O2^{i} \\ C9 - H9 \cdots O1^{ii} \\ C13 - H13 \cdots Cg1^{iii} \end{array}$	0.78 (2)	1.93 (2)	2.6418 (17)	150 (2)
	0.95	2.48	3.375 (2)	157
	0.95	2.59	3.3908 (17)	142

Symmetry codes: (i) x, y - 1, z; (ii) -x + 2, -y + 1, -z; (iii) -x + 1, -y + 2, -z. Cg1 is the centroid of the C1–C6 ring

organic papers

The hydroxy H atom was located in a difference map and its position was freely refined with the constraint $U_{\rm iso}({\rm H})=1.2U_{\rm eq}({\rm O})$. Other H atoms were placed in calculated positions (C-H = 0.95-0.98 Å) and refined as riding, with $U_{\rm iso}({\rm H})=1.2U_{\rm eq}({\rm carrier})$ or $1.5U_{\rm eq}({\rm methyl}\ {\rm carrier})$. The -CH₃ group was rotated to fit the electron density.

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997) and SORTAV (Blessing, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

We thank the EPSRC National Crystallography Service (University of Southampton) for the data collection.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1995). *International Tables for Crystallography*, Vol. C, Section 9.5, pp. 685–706. Dordrecht: Kluwer Academic Publishers.

Basavaraju, Y. B. & Devaraju (2002). *Indian J. Heterocyl. Chem.* **11**, 229–232. Blessing, R. H. (1995). *Acta Cryst.* A**51**, 33–38.

Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

El Sayed, M., Müller, H., Rheinwald, G., Lang, H. & Spange, S. (2001). J. Phys. Org. Chem. 14, 247–255.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Khanum, S. A., Mahendra, M., Shashikantha, S., Doreswarmy, B. H., Sridhar, M. A. & Shashidara Prasad, J. (2005). *Acta Cryst.* E**61**, 03615–03617.

Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.

Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Sieron, L., Shashikanth, S., Yathirajan, H. S., Venu, T. D., Nagaraj, B., Nagaraja, P. & Khanum, S. A. (2004). *Acta Cryst.* E**60**, o1889–o1891.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.