Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

William T. A. Harrison, ${ }^{\text {a }}$ *

H. G. Anilkumar, ${ }^{\text {b }}$
H. S. Yathirajan, ${ }^{\text {b }}$
B. Sadashivamurthy ${ }^{\text {b }}$ and
Y. B. Basavaraju ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, Scotland, and ${ }^{\text {b }}$ Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India

Correspondence e-mail:
w.harrison@abdn.ac.uk

Key indicators

Single-crystal X-ray study
$T=120 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.041$
$w R$ factor $=0.115$
Data-to-parameter ratio $=17.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

3-Chloro-4-hydroxy-4'-methylbenzophenone

The title compound, $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{2}$, possesses normal geometrical parameters. The two benzene rings are twisted by $54.70(4)^{\circ}$, perhaps as a result of steric repulsion between H atoms. The crystal packing is consolidated by an $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond, $\pi-\pi$ stacking and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions, resulting in a two-dimensional network.

Comment

The title compound, (I) (Fig. 1), is an intermediate for the synthesis of podophyllotoxin and its derivatives which have pharmaceutical applications (Basavaraju \& Devaraju, 2002). More generally, benzophenone derivatives have many applications in organic chemistry (Sieron et al., 2004; Khanum et al., 2005).

(I)

Compound (I) possesses normal geometrical parameters (Allen et al., 1995). The dihedral angle, δ, between the mean planes of the two benzene rings (atoms $\mathrm{C} 1-\mathrm{C} 6$ and $\mathrm{C} 8-\mathrm{C} 13$) is 54.70 (4) ${ }^{\circ}$. The $\mathrm{C}-\mathrm{C}_{\mathrm{c}}(c=$ carbonyl) C6-C7[1.480 (2) \AA] and C7-C8 [1.482 (2) Å] bond lengths are only slightly shorter than normal $\mathrm{C}-\mathrm{C}$ single bonds, indicating negligible conjugation between the two aromatic ring systems. The rings may be twisted as a result of steric repulsion between the C5 and C9 H atoms $(\mathrm{H} 5 \cdots \mathrm{H} 9=2.40 \AA$; van der Waals contact distance $=2.40 \AA$), although we note that H9 also participates in a $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interaction (see below). Many other substituted benzophenones possess similar geometrical parameters for the equivalent distances and angles. For example, in 4-dimethylamino-4'-[bis(2-hydroxyethyl)amino]benzophenone

Figure 1
The molecular structure of (I), with 50% probability displacement ellipsoids (arbitrary spheres for the H atoms).

Received 21 October 2005 Accepted 9 November 2005 Online 16 November 2005

Figure 2
Detail of (I) showing how $\pi-\pi$ stacking (pink line) and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ (yellow lines) and $\mathrm{C}-\mathrm{H} \cdots \pi$ (green lines) weak intermolecular interactions help to establish the crystal packing. Symmetry codes as in Table 1; additionally (iv) $1-x, 1-y,-z$.

Figure 3
The packing for (I), with all H atoms except H 1 omitted for clarity. The $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond is indicated by a dashed line. The molecule containing $\mathrm{O} 2^{*}$ is generated by the symmetry code $(x, 1+y, z)$.
(El Sayed et al., 2001), $\mathrm{H} \cdots \mathrm{H}=2.38 \AA, \mathrm{C}-\mathrm{C}_{\mathrm{c}}=1.460$ (3) and 1.484 (3) \AA, and $\delta=47.4$ (1) ${ }^{\circ}$, and in (3-chlorophenyl)(2-hydroxy-5-methylphenyl)methanone (Khanum et al., 2005) $\mathrm{H} \cdots \mathrm{H}=2.52 \AA, \mathrm{C}-\mathrm{C}_{\mathrm{c}}=1.468$ (3) and 1.493 (3) \AA, and $\delta=$ 57.37 (12) ${ }^{\circ}$.

As well as van der Waals forces, the crystal packing in (I) appears to be controlled by several different intermolecular interactions (Table 1). The most clearcut is an $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond that links adjacent molecules of (I) in the b axis direction. Fig. 2 shows that $\pi-\pi$ stacking occurs between adjacent inversion-related C1-C6 benzene rings, with a
centroid-centroid separation of 3.7642 (10) \AA and an interplanar distance of $3.357 \AA$. Additionally, a PLATON (Spek, 2003) analysis of (I) identified probable $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-$ $\mathrm{H} \cdots \pi$ interactions (Table 1). Together, these interactions lead to a two-dimensional network that propagates in the $a b$ plane. The packing is shown in Fig. 3.

Experimental

A solution of o-chlorophenol $(1 \mathrm{~g}, 0.0077 \mathrm{~mol})$ in dry dichloromethane (10 ml) was treated with anhydrous aluminium chloride $(1.037 \mathrm{~g}, 0.0077 \mathrm{~mol})$. The reaction mixture was stirred continuously for 30 min and then cooled. To this, a solution of toluoyl chloride $(1.203 \mathrm{~g}, 0.0077 \mathrm{~mol})$ in methylene chloride $(10 \mathrm{ml})$ was added dropwise and the mixture kept overnight. After 24 h , about 5 ml of concentrated HCl was added and the reaction mixture was stirred for another 24 h . Aqueous NaCl solution (10%) was added to break the emulsion and the lower organic layer was separated and washed with 10% brine. Excess dichloromethane was distilled off on a water bath. The concentrated solution was kept overnight, resulting in a palebrown solid (yield: 89.2%; m.p. 352 K). Colourless single crystals of (I) were recrystallized from a 1:1 mixture of acetone and acetonitrile.

Crystal data

$$
\begin{array}{ll}
\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{2} & Z=2 \\
M_{r}=246.68 & D_{x}=1.410 \mathrm{Mg} \mathrm{~m}^{-3} \\
\text { Triclinic, } P \overline{1} & \text { Mo } K \alpha \text { radiation } \\
a=7.1062(3) \AA & \text { Cell parameters from } 2534 \\
b=8.5441(5) \AA & \quad \text { reflections } \\
c=9.8766(6) \AA & \theta=2.9-27.5^{\circ} \\
\alpha=86.124(3)^{\circ} & \mu=0.31 \mathrm{~mm}^{-1} \\
\beta=83.804(3)^{\circ} & T=120(2) \mathrm{K} \\
\gamma=77.290(3)^{\circ} & \text { Cut block, colourless } \\
V=580.96(5) \AA^{\circ} & 0.32 \times 0.16 \times 0.10 \mathrm{~mm}
\end{array}
$$

Data collection

Nonius KappaCCD diffractometer ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
$T_{\text {min }}=0.906, T_{\text {max }}=0.969$
11199 measured reflections
2684 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.115$
$S=1.05$
2037 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.048$
$\theta_{\text {max }}=27.8^{\circ}$
$h=-9 \rightarrow 9$
$k=-11 \rightarrow 11$
$l=-12 \rightarrow 12$

2684 reflections
158 parameters

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{i}}$	$0.78(2)$	$1.93(2)$	$2.6418(17)$	$150(2)$
$\mathrm{C} 9-\mathrm{H} 9 \cdots \mathrm{O}^{1 i}$	0.95	2.48	$3.375(2)$	157
$\mathrm{C} 13-\mathrm{H} 13 \cdots \mathrm{Cg} 1^{\mathrm{iii}}$	0.95	2.59	$3.3908(17)$	142

Symmetry codes: (i) $x, y-1, z$; (ii) $-x+2,-y+1,-z$; (iii) $-x+1,-y+2,-z . C g 1$ is the centroid of the $\mathrm{C} 1-\mathrm{C} 6$ ring

organic papers

The hydroxy H atom was located in a difference map and its position was freely refined with the constraint $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{O})$. Other H atoms were placed in calculated positions $(\mathrm{C}-\mathrm{H}=0.95-$ $0.98 \AA$) and refined as riding, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}($ carrier $)$ or $1.5 U_{\text {eq }}$ (methyl carrier). The $-\mathrm{CH}_{3}$ group was rotated to fit the electron density.

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski \& Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski \& Minor, 1997) and SORTAV (Blessing, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1995). International Tables for Crystallography, Vol. C, Section 9.5, pp. 685-706. Dordrecht: Kluwer Academic Publishers.
Basavaraju, Y. B. \& Devaraju (2002). Indian J. Heterocyl. Chem. 11, 229-232. Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
El Sayed, M., Müller, H., Rheinwald, G., Lang, H. \& Spange, S. (2001). J. Phys. Org. Chem. 14, 247-255.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Khanum, S. A., Mahendra, M., Shashikantha, S., Doreswarmy, B. H., Sridhar, M. A. \& Shashidara Prasad, J. (2005). Acta Cryst. E61, o3615-o3617.

Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sieron, L., Shashikanth, S., Yathirajan, H. S., Venu, T. D., Nagaraj, B., Nagaraja, P. \& Khanum, S. A. (2004). Acta Cryst. E60, o1889-o1891.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

